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Statistics of the One-Dimensional Riemann Walk
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The Riemann walk is the lattice version of the Le� vy flight. For the one-dimen-
sional Riemann walk of Le� vy exponent 0<:<2 we study the statistics of the
support, i.e., set of visited sites, after t steps. We consider a wide class of support
related observables M(t), including the number S(t) of visited sites and the
number I(t) of sequences of adjacent visited sites. For t � � we obtain the
asymptotic power laws for the averages, variances, and correlations of these
observables. Logarithmic correction factors appear for := 2

3 and :=1. Bulk and
surface observables have different power laws for 1�:<2. Fluctuations are
shown to be universal for 2

3�:<2. This means that in the limit t � � the
deviations from average 2M(t)#M(t)&M(t) are fully described either by a
single M independent stochastic process (when 2

3<:�1) or by two such pro-
cesses, one for the bulk and one for the surface observables (when 1<:<2).

KEY WORDS: One-dimensional random walk; set of sites visited; Le� vy
flight; universal random variables.

1. INTRODUCTION

The Le� vy flight is a random walk in continuous space whose step size dis-
tribution has a power law tail and is therefore sometimes called a ``Le� vy(1)

distribution.'' The ubiquity of such distributions has been emphasized by
many authors, and is a consequence of the power law tail being invariant
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under convolution. Many interesting instances of the occurrence of Le� vy
distributions are given by Tsallis(2) and Tsallis et al.(3) These range from
applications in physics (superdiffusion, chaotic fluid flow) and engineering
(leaking taps) through studies of the physiology of heart activity, all the
way to descriptions(4) of fluctuations of financial markets.

A one-dimensional lattice version of the Le� vy flight may be constructed
as follows. Let a random walk consist of independent steps, and let the
probability p(l) for a displacement of l lattice units in a single step be
given by p(0)=0 and

p(l)=A |l| &1&: (l=\1, \2,...) (1.1)

Here :>0 is the Le� vy exponent. Normalization of p implies that A&1=
2`(1+:) where ` is the Riemann zeta function. This random walk was first
studied by Gillis and Weiss(5) in 1970. It is called the Riemann walk by
Hughes (ref. 6, p. 154) and we will conform to that terminology. More
generally we call of Riemann type any one-dimensional lattice walk whose
p(l) is asymptotically proportional to |l|&1&: when |l| � �.

Riemann type walks were reviewed in detail by Hughes.(6) Of par-
ticular interest is the exponent regime 0<:�2, where these walks have a
mean square displacement per step, (l2) , which is infinite. There then
exists, at least for certain global walk features, a correspondence between
simple random walk on a d-dimensional lattice and one-dimensional
Riemann type walks of exponent :=2�d. In some ways the fraction 2�: acts
as the walk's effective dimensionality. But whereas analytical results for
noninteger dimension d cannot be checked by computer simulations, the
full continuum of : values is accessible to Monte Carlo studies.

Much interest has centered around the following question. Let there
be a t step Riemann walk. Then what are the statistical properties of its
support S(t), i.e., of the set of sites that the walk has visited? There appears
immediately an important difference between the exponent regimes 0<:<1
and 1<:<2. In the former regime the Riemann walk is transient(6, 7) and
it is easy to show (see Section 2.5) that S(�) is a set of fractal dimension
dS=:. In the latter case the Riemann walk is recurrent, (6, 7) S(�) coin-
cides with the full one-dimensional lattice, and dS=1. The existing
literature deals with the different question of finding the properties of S(t)
for asymptotically large t; the results reflect, nevertheless, the same distinc-
tion between 0<:<1 and 1<:<2. The borderline case :=1 is more subtle.

Gillis and Weiss(5) study the number S(t) of distinct sites in the support.
They find, among other results, that for t � � the average of this random
variable behaves(5) as S(t)tt for 0<:<1 and as S(t)tt1�: for 1<:<2,
where t indicates asymptotic proportionality. For :=1 and :=2 power
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laws with logarithmic correction factors appear.(5) For :>2 the result
S(t)tt1�2 is identical to that for the simple random walk in d=1.

A recent extension of this work is due to Berkolaiko et al.(8) Pursuing
a question initially asked for the case of the simple random walk by
Larralde et al., (9) these authors investigate the number SN(t) of distinct
sites visited by N independent t step Riemann type walks all starting on the
same lattice site. Again power laws appear, both for t � � at fixed N and
for N � � at fixed t.

The present work extends the investigations of Gillis and Weiss into a
different direction. We limit ourselves to the Riemann walk defined by
Eq. (1.1), with : in the regime of greatest interest, that is, 0<:<2. Our
results may be summarized under three headings.

1. Variance 2S2(t). For any quantity X(t) we will denote its instan-
taneous deviation from average by 2X(t)#X(t)&X(t). Traditionally in
this field the calculation of the average number S(t) of distinct sites visited
has been followed by a calculation of the variance 2S2(t) of that number.
Thus, for the simple random walk S(t) was first calculated by Dvoretzky
and Erdo� s(10) in 1951, and 2S2(t) by Jain and Pruitt(11) in 1970. For the
one-dimensional Riemann walk the present work supplements the 1970
results due to Gillis and Weiss(5) for S(t) by the corresponding ones for the
variances 2S2(t) in the regime 0<:<2.

2. Variables Other than S(t). We use the powerful generating function
method (GFM), which was introduced into the field of random walks by
Montroll(12) and Montroll and Weiss. (13) Overviews of this method are
given by Weiss(7) and by Hughes.(6) The first calculation of a variance by
the GFM, viz. that of S(t) for the simple random walk, is due to Torney(14)

in 1986; its reformulation by Larralde and Weiss(15) in 1995 is in the same
spirit as our present approach.

In 1994 Coutinho et al.(16) performed Monte Carlo simulations of,
among other things, the number of unvisited islands enclosed by the
support of the t step simple random walk in two dimensions. This led
Caser and Hilhorst(17) to analytically determine the asymptotic behavior
of the average number of islands. Subsequently Van Wijland et al.(18, 19)

developed a compact GFM based analytical scheme for calculating simul-
taneously the averages, variances, and correlations of a large class of
observables characteristic of the support, generically denoted by the sym-
bol M(t). In d=2 this class includes also the total boundary length of the
support, and in d=3 its surface area and Euler index.

Here we bring this scheme to bear on the one-dimensional Riemann
walk. The support of this walk consists of sequences of adjacent visited
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Table I. Leading Asymptotic Behavior as t � � of the Averages, Variances,
and Correlation of S(t) and I(t) in Different Regimes of the Le� vy Exponent :.
The Exact Prefactors of the Asymptotic Laws Are Given in the Text. The
Results for S(t) Are Due to Gillis and Weiss;(5) the Result for 2S2(t) in the
Range 0<:< 2

3 Follows from the Theorem of Jain, Orey, and Pruitt (see
Hughes,(6) p. 344); All Others Are New

0<:< 2
3 := 2

3
2
3<:<1 :=1 1<:<2

S(t)
t t t

t log&1 t t1�:

I(t) t log&2 t t2�:&1

2S2(t) t2 log&4 t t2�:

2S(t) 2I(t) t t log t t4&2�: t2 log&5 t t3�:&1

2I2(t) t2 log&6 t t4�:&2

sites separated by sequences of adjacent unvisited sites. The number of
sequences of visited sites will be denoted by I(t). The support therefore has
2I(t) boundary sites (=visited sites adjacent to an unvisited one). The
quantity I(t) is, next to S(t), an important characteristic of the support,
and is among the most prominent members of the class of observables M(t).

Table I summarizes our results for the asymptotic laws of the
averages, variances, and correlations involving S(t) and I(t). Beyond their
intrinsic interest these laws may serve in heuristic arguments in reaction-
diffusion processes, e.g., to estimate the trapping probability of an atom
that diffuses in a random absorbing environment, or the effective reaction
rate between two diffusing species. We defer further comments to Section 7.

3. Universality of fluctuations. The deviations from average 2S(t),
2I(t),..., 2M(t),... are randomly time-dependent variables that one would a
priori expect to exhibit some degree of correlation. One calls these fluctua-
tions universal��by lack of a better name��when in the limit t � � all
2M(t) are asymptotically equal (up to a proportionality constant) to a
single M independent stochastic process. For the simple random walk
universality was shown to hold in dimensions d=2(18) and d=3, (19) and
not to hold in d=4, 5,... . For the d=1 Riemann walk we find that univer-
sality holds in the exponent regime 2

3�:<2, but not for 0<:< 2
3 .

A novelty with respect to the case of the simple random walk is that for
1<:<2 not a single, but two M independent processes are needed to
describe the universal fluctuations: one applies to bulk and the other to
surface observables. The precise statements are given in Section 6.

This article is set up as follows. Section 2 describes those elements of
our analysis that are common to the full exponent interval 0<:<2.
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Sections 3 and 4 deal more in particular with the exponent regimes 0<:<1
and 1<:<2, respectively, and derive the asymptotic behavior of averages,
variances, and correlations. In Section 5 we do the same for the exceptional
values a= 2

3 and :=1. In Section 6 we discuss the universality properties.
In Section 7 we provide some additional interpretation of our results and
conclude.

2. OBSERVABLES, AVERAGES, AND CORRELATIONS

2.1. Observables M(t)

Our analysis is based on first writing quantities of interest in terms of
the field m(x, t) of ``complementary occupation numbers'' defined by
m(x, t)=1 if site x has not yet been visited at time t, and m(x, t)=0
otherwise. The expressions of S and I in terms of m are

S(t)= :
�

x=&�

[1&m(x, t)] (2.1)

I(t)= :
�

x=&�

m(x, t)[1&m(x+1, t)] (2.2)

S and I are representatives of a general class of ``observables'' M that are
sums on x of a summand to which each lattice site contributes a factor m,
1&m, or 1, i.e., the summand tests for the presence of a specific pattern of
visited (``black'') and unvisited (``white'') sites. The following slightly more
abstract characterization of the M will be needed. Let A=[a] be a finite
set of distinct nonnegative integers a, such that either A=< or, if not,
A includes the element a=0. The general observable M(t) that we will
consider is

M(t)= :
�

x=&�

:
A

+A `
a # A

m(x+a, t) (2.3)

where for A=< the product is equal to unity and where [+A] is a set of
numerical coefficients characteristic of M. When their M dependence needs
to be indicated we will write +A[M]. Equations (2.2) and (2.1) show that
S(t) and I(t) are of the form of Eq. (2.3) with only two nonzero coefficients,
as shown in Tabel II.

Two further examples of observables of type (2.3) are the total number
S1(t) of visited sequences consisting of only a single site, and the total num-
ber I1(t) of single-site unvisited sequences. Their coefficients +A involve sets
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Table II. Coefficients +A[M] for the Four Observables M=S, I, S1, I1 Defined
in the Text; Entries Not Shown Are Zero. The Coefficients in Each Column Add

Up to Zero

A +A[S ] +A[I ] +A[S1] +A[I1]

< 1
[0] &1 1 1
[0, 1] &1 &2
[0, 2] 1
[0, 1, 2] &1 1

A of up to three elements; they are easily determined and have also been
listed in Table II.

The following remarks, important for later, are verified without much
effort. The coefficient +< is nonzero if and only if M is built up exclusively
out of factors 1&m. Since these correspond to visited sites, that make up
the ``bulk'' of the support, we will call an M of this type a bulk observable.
Observables built up exclusively out of factors m do not occur, since their
expectation value on an infinite lattice is infinite. Hence the remaining
observables refer to patterns consisting of both visited and unvisited sites,
and we will therefore call them surface observables. [In the terminology of
refs. 18 and 19 these are ``black'' and ``black-and-white'' observables. They
might also be called ``S-like'' and ``I-like,'' respectively.] The distinction
between these two subclasses will play a role only in the exponent regime
1�:<2.

2.2. Basic Formulas for Averages and Correlations

In this work we will first evaluate the t � � behavior of the averages
M(t). Then we turn to the covariance matrix 2M(t) 2M$(t), where M$(t)
is a second observable with coefficients +$A . Although the authors of refs. 18
and 19 deal with the simple random walk, the larger part of their formal
developments also holds for the Riemann walk.

The averages M(t) and M(t) M$(t) can be obtained as follows.(18, 19)

Let G(x, t) be the Green function of the one-dimensional Riemann walk,
that is, the probability for a walker starting at the origin to occupy site x
after t steps. Let G� (x, z)=��

t=0 ztG(x, t) denote its generating function and
let GA(z) be the |A|_|A| matrix of elements G� (a&a$, z) with a, a$ # A.
From this matrix one constructs the ``inverse sum'' GA(z) defined by

G&1
A (z)= :

a, a$ # A

[G&1
A (z)]aa$ (2.4)
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These scalars satisfy certain elementary relations stated in Appendix A as
Properties 1�3. Two functions CM(z) and CMM$(z) are defined in terms of
the GA(z) according to

CM(z)= :
A{<

+A
1

GA(z)
(2.5)

CMM$(z)= :
A{<

:
B{<

+A+$B :
�

r=&� _ 1
GA _ (r+B)(z)

&
1

GA(z)
&

1
GB(z)& (2.6)

Here A _ (r+B) denotes the union of the set B, translated by r, and A. The
averages M(t) and M(t) M$(t) are then obtained as(18, 19)

M(t)=&
1

2?i �
dz

zt+1

1
(1&z)2 CM(z) (2.7)

M(t) M$(t)=&
1

2?i �
dz

zt+1

1
(1&z)2 CMM$(z) (2.8)

where the integrations are counterclockwise around the origin.
The identities (2.4)�(2.8) are fundamental to random walk theory;

they hold for any translationally invariant random walk, whether on a
finite lattice with periodic boundary conditions or on an infinite lattice.
They allow for the calculation, in a very compact way, of many known and
new results.

Special Cases. When M(t)=S(t), the following simplifications occur.
The sums on A and on B in Eqs. (2.5) and (2.6) then have only the single
term with A=[0] and B=[0], respectively. Furthermore G[0](z)=G� (0, z),
the matrix G[0] _ (r+[0]) is two by two, and an easy calculation leads
to G[0] _ (r+[0])(z)= 1

2 (G� (0, z)+G� ((r, z)). When M(t)=I(t), the sum in
Eq. (2.5) involves G[0](z) and G[0, 1](z)= 1

2 (G� (0, z)+G� (1, z)). The sums on
A and B in Eq. (2.6) then lead to four terms, which may be evaluated with
a little more effort.

2.3. Limit t � � and Scaling Limit

Explicit evaluation of the general expressions (2.4)�(2.8) is limited in
practice by the calculation of the inverse sums GA , which require the inver-
sion of a matrix of dimension |A|. Similarly, evaluation of GA _ (r+B) is an
inversion problem of dimension |A|+|B| (when A and r+B have an
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empty intersection). It turns out that the sum on r in Eq. (2.6) can be
performed only in the scaling limit

z � 1, |r| � � with !=r(1&z)1�: fixed (2.9)

Finally, it will be possible to evaluate the integrals in Eqs. (2.7) and (2.8)
only asymptotically for t � �, a limit already implied by Eq. (2.9).

In order to prepare for these limits we rewrite the preceding expres-
sions as follows. Using the simplified notation G0(z)=G� (0, z) we split the
generating function G� (x, z) up according to

G� (x, z)=G0(z)& g(x, z) (2.10)

In full analogy to GA(z) we define gA(z) as the matrix of elements
g(a&a$, z) with a, a$ # A, and g&1

A as the sum of all elements of g&1
A . Let

now J be the square matrix of elements Jaa$=1. Then

GA(z)=G0(z) J&gA(z) (2.11)

and, by Property 1 of Appendix A,

GA(z)=G0(z)& gA(z) (2.12)

This splitup will be useful for studying the z � 1 behavior of GA(z).
Although G0(z) may (1�:<2) or may not (0<:<1) diverge as z � 1,
the functions g(x, z) and gA(z) remain finite in that limit.

We now turn to the inverse sum GA _ (r+B) constructed from the
matrix GA _ (r+B) . The dimension of this matrix is typically |A|+ |B|. Let
JAB be the |A|_|B| matrix with all J AB

ab =1. We then have (for A & B=<)

GA _ (r+B)(z)=\ GA(z)
G� (r, z) JBA

G� (r, z) JAB

GB(z) ++\ 0
VT

V
0 + (2.13)

where V is the matrix of elements

Va, r+b=G� (r+b&a, z)&G� (r, z) a # A, b # B (2.14)

and VT is its transpose. The first matrix on the RHS of (2.13) has the form
(A.4) of Appendix A. Applying Property 3 to that matrix we conclude that

1
GA _ (r+B)(z)

=
GA(z)+GB(z)&2G� (r, z)
GA(z) GB(z)&G� 2(r, z)

+O(V2) (2.15)

266 Mariz et al.



where we anticipate, and will have to show later, that V is small, that the
correction terms are of order O(V2), and that they are negligible for our
purpose.

Further analysis depends on the exponent :. We consider the two
main regimes 0<:<1 and 1<:<2 in Sections 3 and 4, respectively. The
exceptional values := 2

3 and :=1 are discussed in Section 5.

2.4. Riemann Walk Green Function

All quantities of interest have been expressed above in terms of the
Riemann walk Green function G� (x, z). An elementary calculation yields

G� (x, z)=|
?

&?

dq
2?

e&iqx

1&z*(q)
(2.16)

*(q)=
1

`(1+:)
:
�

l=1

l&1&: cos lq (2.17)

The q � 0 behavior of *(q) is crucial for the large scale features of the
Riemann walk. It is known(5, 6) that

*(q)=1&C: |q|:+O(q2) (q � 0) (2.18)

where for completeness we state the explicit expression

C &1
: =2`(1+:) 1 (1+:)�[? sin(:?�2)] (2.19)

One finds by standard methods (see e.g., ref. 6) that in the limit z � 1 the
Green function in the origin G0(z) has the asymptotic expansion

G0(z)=G0(1)&B:(1&z)1�:&1+O(1&z) (0<:<1; :{ 1
2) (2.20)

G0(z)=G0(1)&
2
?

(1&z) log(1&z)&1+O(1&z) (2.21)

G0(z)= 1
3 log[c(1&z)&1]+O(1&z) (:=1) (2.22)

G0(z)=A:(1&z)&1+1�:+O(1) (1<:<2) (2.23)

where B: and A: are the constants

B:=&C 1�:
: �[2 sin(?�:)] ( 1

2<:<1) (2.24)

A:=1�[2:C 1�:
: sin(?�:)] (1<:<2) (2.25)

and c is a constant such that there is no O(1) term in Eq. (2.22). In
Eqs. (2.20)�(2.23) and elsewhere we use the following convention. The
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symbol O(X ) indicates terms that are of order X in the applicable limit
(X � 0 or X � �); this however is not to say that all preceding terms are
larger. Thus, the nonanalytic term in Eq. (2.20) dominates the O(1&z)
terms only for 1

2<:<1. For 0<:< 1
2 it is present only as a correction to the

O(1&z) terms (the expression for its coefficient B: in that regime is different
from Eq. (2.24), but will not be needed).

From Eqs. (2.16) and (2.18) one deduces that in the scaling limit (2.9)

G� (r, z)& (1&z)1�:&1 F(!) (0<:<2) (2.26)

where !=r(1&z)1�: and F(!) is the scaling function

F(!)=|
�

&�

dk
2?

e&ik!

1+C: |k| : (2.27)

For ! � 0 it behaves as

F(!)&2:`(1+:)�[? sin(:?)] !&1+: (0<:<1) (2.28)

F(!)& 1
3 log !&1 (:=1) (2.29)

F(!)=A:+O(!:&1) (1�:<2) (2.30)

In Sections 4 and 5 we will also use the function f (r, z) defined by

G� (r, z)=G0(z) f (r, z) (1�:<2) (2.31)

In the scaling limit one has f (r, z)& f (!)=F(!)�F(0) when 1<:<2.

2.5. Support at t=�

Whereas the remainder of this paper deals with the large t behavior,
we briefly comment here on the structure of the support S(t) at t=�.

As is well-known, (7, 6) random walks are recurrent (are transient) if
G0(1)=� (if G0(1)<�). The Riemann walk of this work is recurrent for
1�:<2, which means that all sites are visited with probability 1, and that
at t=� the support S(�) coincides with the full one-dimensional lattice.

For 0<:<1, however, the Riemann walk is transient, so that at
t=� the support S(�) will still be only a subset of the full lattice. We
may estimate the average number of visited sites 7L between x=&L and
x=L in S(�). According to standard random walk theory(7, 6)

7L= :
L

x=&L

G� (x, 1)
G0(1)

(2.32)
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Upon substituting (2.16) in (2.32) one easily evaluates 7L for asymptoti-
cally large L, with the result that 7LtL:. It follows that the support
S(�) has fractal dimension dS=:.

3. RIEMANN WALK OF EXPONENT 0<:<1

3.1. Averages

The large time behavior of M(t) comes from the behavior of CM(z),
defined in Eq. (2.5), in the limit z � 1. From Eq. (2.10) and the explicit
expressions (2.16) and (2.17) it may be shown that g(x, z)= g(x, 1)+
O(1&z) for all 0<:<1. Hence

gA(z)= gA(1)+O(1&z) (3.1)

after which it follows from Eqs. (2.12), (2.23), and (3.1) that

GA(z)=GA(1)&B:(1&z) (1�:)&1+O(1&z) (3.2)

Inverting this relation and substituting in Eq. (2.5) gives

CM(z)=&m1&B:m2(1&z) (1�:)&1&B2
:m3(1&z) (2�:)&2+ } } } +O(1&z)

(3.3)

where the mn are determined by the coefficients +A of the observable M
according to

mn[M]= :
A{<

+A

Gn
A(1)

(n=1, 2,...; 0<:<1) (3.4)

In Eq. (3.3) the dots stand for a power series in (1&z)(1�:)&1 and the num-
ber of nonanalytic terms between the zeroth and the first power of 1&z is
equal to n:#W:�(1&:)X&1. That is, n: is zero for 0<:< 1

2 and, as : goes
up, jumps to 1, 2, 3,... at := 1

2 , 2
3 , 3

4 ,..., respectively. Upon substituting (3.3)
in (2.7) and evaluating the integral on z asymptotically for t � � we get

M(t)=m1 t+
B:

1 (3&(1�:))
m2t2&(1�:)+

B2
:

1 (4&(2�:))
m3 t3&(2�:)+ } } } +O(1)

(3.5)

where the number of nonanalytic terms between the leading and the O(1)
term is again equal to n: .
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3.2. Correlations

In this subsection we consider two��possibly equal��observables M
and M$, represented by sets of coefficients [+A] and [+$A], respectively,
and wish to study their correlation. The starting point is Eq. (2.6) for
CMM$(z), in which we substitute Eq. (2.15). Whereas GA(z) and GB(z) tend
to finite values in the limit z � 1, the Green function G� (r, z) vanishes in
that limit when taken with ! fixed. This suggests that we expand in powers
of G� (r, z),

1
GA _ (r+B)(z)

&
1

GA(z)
&

1
GB(z)

= :
�

n=1

C (n)
AB(z) G� n(r, z)+O(V2) (3.6)

with coefficients

C (n)
AB(z)={[GA(z)+GB(z)][GA(z) GB(z)]&(n�2)&1

&2[GA(z) GB(z)]&(n+1)�2

(n even)
(n odd)

(3.7)

The sum over space that occurs in Eq. (2.6) leads us to now consider the
sums �r G� n(r, z). From conservation of probability one finds that for n=1

:
r

G� (r, z)=(1&z)&1 (3.8)

For general n the calculation of �r G� n(r, z) is slightly more laborious; after
substituting Eq. (2.16) for G� one finds by explicit expansion in powers of
1&z that for z � 1 the sum on r behaves as

:
r

G� n(r, z)&F:, n(1&z)&1+(n&1)((1�:)&1)+O(1) (0<:<1; :{1&(1�n))

For n=1&[1�(1&:)] (with n=1, 2,...) the sum on r instead behaves as
log(1&z); this happens, in particular, for n=3 when := 2

3 , a case studied
separately in Section 5.

We will now continue to consider the generic case. The nonanalytic
term on the RHS of Eq. (3.9) dominates the O(1) term only for n<
1�(1&:). In that case (3.9) follows just from the scaling form (2.23) of
G� and from the ! � 0 behavior (2.28) of F(!). One then finds for the
prefactor F:, n the expression

F:, n=2 |
�

0
d! F n(!) (1&(1�n)<:<1) (3.10)
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For 0<:<1&(1�n) the expression for F:, n is different and will not be
needed. Eq. (3.10) shows that the main contribution to the sum on r comes
from !t1, that is, from rt(1&z)&1�:. For n=1 and n=2 the integral
(3.10) yields the explicit results F:, 1=1, in agreement with Eq. (3.8), and
F:, 2=((1�:)&1) B: , respectively. For n>1�(1&:) the sum on r draws its
main contribution from the short distance (nonscaling) regime rt1, and is
of O(1) for z � 1.

By successively substituting Eq. (3.7) in Eq. (3.6), neglecting the O(V2)
terms in that equation��which is justified in Appendix B��then substituting
Eq. (3.6) in Eq. (2.6), expanding GA(z) and GB(z) according to Eq. (3.2),
and using the z � 1 behavior of �r G� n(r, z) obtained in Eqs. (3.8) and (3.9)
we find

CMM$(z)

=&2(1&z)&1 m1m$1

&(1&z)(1�:)&2 B: \3&
1
:+ (m1 m$2+m2m$1)

&(1&z)(2�:)&3 _\4&
2
:+ B2

:(m1 m$3+m3 m$1+m2m$2)+2F:, 3m2m$2&
& } } } +O(1) (3.11)

Here the dots stand for terms of order (1&z)&1+k((1�:)&1), with k=3, 4,...;
and the m$n are related to M$ in the same way as the mn are to M. By sub-
stituting (3.11) in Eq. (2.8) and evaluating the z integral we then find that
for t � �

M(t) M$(t)

=m1m$1 t2+
B:

1 (3&(1�:))
(m1m$2+m2m$1) t3&(1�:)

+_ B2
:

1 (4&(2�:))
(m1m$3+m3m$1+m2m$2)+

2F:, 3

1 (5&(2�:))
m2m$2& t4&(2�:)

+ } } } +O(t) (3.12)

The successive terms in the above series all have one power of t more than
the corresponding terms in the series (3.5) for M(t), and the number of
nonanalytic terms between the leading and the O(t) term is once more
equal to n: . The product M(t) M$(t), which follows from Eq. (3.5), now
has to be subtracted from the series (3.12). This exactly cancels the terms
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in (3.12) proportional to t2 and to t3&(1�:) but leaves those proportional to
t4&(2�:) and of O(t). The t4&(2�:) terms are leading only if 2

3<:<1. Hence
we find for the correlation between observables M and M$ in the limit
t � �

2M(t) 2M$(t)&B2
:m2m$2t4&(2�:) (3.13)

valid for 2
3<:<1, and in which

B2
:=

2F:, 3

1 (5&(2�:))
+

B2
:

1 (4&(2�:))
&

B2
:

1 2(3&(1�:))
(3.14)

We have supposed here that m2 , m$2{0. The preceding analysis changes
when either of these two coefficients vanishes. We do not know of any
physically interesting examples where this happens, and do not pursue our
analysis in this direction.

The borderline case := 2
3 is considered in Section 5. In the interval

0<:< 2
3 the calculation of the present section applies, but with the result

that

2M(t) 2M$(t)&}MM$t (0<:< 2
3) (3.15)

in which the coefficient }MM$ has contributions from the O(1) terms in
Eq. (3.5) and the O(t) terms in Eq. (3.12), and does not factor into an M
and an M$ dependent constant. This difference between Eqs. (3.13) and
(3.15) is crucial for the phenomenon of universality discussed in Section 6.

4. RIEMANN WALK OF EXPONENT 1<:<2

4.1. Averages

The calculation of M(t) starts again from the series (2.5) for CM(z).
The calculation in the exponent regime 1<:<2 is different from that of
the preceding section because now G0(z) diverges as z � 1. Since gA(z)
remains finite for z � 1, this suggests that we use Eq. (2.12) and expand
GA(z) in powers of gA(z)�G0(z). This yields

CM(z)= :
A{<

+A
1

G0(z) _1+
gA(z)
G0(z)

+
g2

A(z)
G2

0(z)
+O \g3

A

G3
0+& (4.1)

We now substitute in Eq. (4.1) the expansion (2.23) for G0(z) and use that
gA(1) is finite. The result is a power series in 1&z in which there appear
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coefficients that we denote again by mn but that are defined for 1�:<2
as

mn[M]=& :
A{<

+Agn
A(1) (n=0, 1, 2,...; 1�:<2) (4.2)

It will turn out that we need only the leading term, which is

CM(z)&{A&1
: m0(1&z)1&(1�:)

A&2
: m1(1&z)2&(2�:)

(m0{0)
(m0=0, m1{0)

(4.3)

We pause to note that in the terminology of Section 2.1 the condition
m0{0 characterizes the bulk or ``S-like'' observables, and the condition
m0=0 the surface or ``I-like'' observables. This is the first equation where
a difference appears between these two subclasses; in its analog, Eq. (3.5)
of the preceding section, no such distinction appears.

Upon using Eq. (4.3) in Eq. (2.7) we obtain the asymptotic expansion
of M(t) as t � �,

M(t)&{[A:1 (1+(1�:))]&1 m0 t1�:

[A:1 (2�:)]&1 m1 t (2�:)&1

(m0{0)
(m0=0, m1{0)

(4.4)

4.2. Correlations

For the calculation of the correlation M(t) M$(t) via Eqs. (2.8) and
(2.6) we have to return again to expression (2.15) for 1�GA _ (r+B)(z), which
is needed in Eq. (2.6). We use Eqs. (2.15), (2.12), and (2.31) to rewrite this
quantity as

1
GA _ (r+B)(z)

=
1

G0(z)

2(1& f (r, z))&
gA(z)
G0(z)

&
gB(z)
G0(z)

1& f 2(r, z)&
gA(z)
G0(z)

&
gB(z)
G0(z)

+
gA(z) gB(z)

G 2
0(z)

+O(V2)

(4.5)

The function f (r, z) was defined in Eq. (2.31). In the scaling limit f (r, z),
gA(z), and gB(z) have finite limits, whereas G0(z) diverges. An expansion
in inverse powers of G0(z) corresponds therefore to an expansion in
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ascending powers of 1&z. Writing for short f, gA , gB , and G0 when f (r, z),
gA(z), gB(z), and G0(z) are meant, we find after a straightforward calculation

CMM$(z)= :
�

r=&�

1
G0

f
1+ f

:
A, B{<

+A +$B _2+(2+ f )
gA+ gB

G0

+
2&2f&f 3

(1& f )(1+ f )2

g2
A+ g2

B

G2
0

+
2

(1& f )(1+ f )2

gAgB

G2
0

+O \g3
A

G3
0

,
g3

B

G3
0+&

(4.6)

Let us write m$n=mn[M$] for the coefficients that characterize the observ-
able M$. The two distinct cases described by Eq. (4.4) now lead to the
following possibilities.

Case (i): m0{0 and m$0{0. In this case the leading term in the
expression in brackets in Eq. (4.6) survives under the sum on A and B.

Case (ii): m0=0, m1{0, and m$0{0. In this case in order to survive
a term in the bracketed expression should contain at least one factor gA(z).

Case (iii): m0=m$0=0 but m1{0 and m$1{0. In this case a term in
order to survive must contain at least one factor gA(z) and one factor
gB(z). Upon using in each of these cases for G0(z) the expansion (2.23),
passing to the scaling limit, and writing f for f (!), we find that the result
is

&A&1
: (1&z)1&(2�:) f00m0m$0

CMM$(z)&{&A&1
: (1&z)2&(3�:) f10m1 m$0 (4.7)

&A&1
: (1&z)3&(4�:) f11m1m$1

in the three cases (i), (ii), and (iii), respectively; here the coefficients fkl

represent the integrals

f00=4 |
�

0
d! f (1+ f )&1

f10=2 |
�

0
d! f (2+ f )(1+ f )&1 (4.8)

f11=4 |
�

0
d! f (1& f )&1 (1+ f )&3
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After substituting Eqs. (4.7) in Eq. (2.8) and carrying out the z integral we
find, in the limit t � �,

1 &1 \1+
2
:+ A&1

: f00m0m$0 t2�:

M(t) M(t$)&{1 &1 \3
:+ A&2

: f10m1m$0 t(3�:)&1 (4.9)

1 &1 \&1+
4
:+ A&3

: f11m1m$1 t(4�:)&2

respectively, for the three cases distinguished above. Upon combining these
results with those of Section 4.1 one obtains, for t � �,

B2
:00m0 m$0 t2�:

2M(t) 2M$(t)&{B2
:10m1 m$0 t(3�:)&1 (4.10)

B2
:11m1 m$1 t(4�:)&2

in which the coefficients B:kl are given by

B2
:00=A&1

: _ f00 1 &1 \1+
2
:+&A&1

: 1 &2 \1+
1
:+&

B2
:10=A&2

: _ f10 1 &1 \3
:+&A&1

: 1 &1 \1+
1
:+ 1 &1 \2

:+& (4.11)

B2
:11=A&3

: _ f11 1 &1 \&1+
4
:+&A&1

: 1 &2 \2
:+&

in the three cases (i), (ii), and (iii) defined above, respectively. We recall
that the fkl on the RHS of Eq. (4.11) are given by Eq. (4.8) as integrals on
f (!), with f (!) in turn given by Eq. (2.27).

5. RIEMANN WALK OF EXPONENTS := 2
3 AND :=1

5.1. Exponent := 2
3

In this special case M(t) is still given by Eq. (3.5). However, the
calculation of M(t) M$(t) has to be reconsidered, as signalled by the fact
that F:, 3 in Eq. (3.11) diverges for : � 2

3
+. In order to calculate �r G� (r, z)

we cannot now use Eq. (3.9). Instead we replace G� (r, z) by its scaling form
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(2.23) but take into account that |!| has a lower cutoff |!|tcst_(1&z)2�3.
This gives

:
r

G� 3(r, z)&2 |
�

cst_(1&z)2�3
d! F 3(!)

& 1
2 C2 log(1&z)&1+O(1) (z � 1) (5.1)

where in the second step we used Eq. (2.25) and found for the coefficient
the value C2=2123&11�2?&3`3( 3

2). In this case, due to the log(1&z) in the
equation above, M(t) M$(t) is larger than the product M(t) M$(t) by a
factor log t, and determines by itself alone the final result, which reads

2M(t) 2M$(t)&C2m2 m$2t log t (t � �) (5.2)

This t log t behavior is the same as in the well-known case of the simple
random walk in spatial dimension d=3.(19)

5.2. Exponent :=1

The case of Le� vy exponent :=1 is subtler than the others. Since it is
closely analogous to the simple random walk in dimension d=2, (18) we will
not present all steps in detail. Equation (2.22) shows that for :=1 the
Green function in the origin, G0(z), diverges as z � 1. We can therefore
expand CM(z) as a series in the same way as in Eq. (4.1). Since here again
gA(z)= gA(1)+O(1&z), and in view of the logarithmic behavior (2.22),
this series now leads to an expansion of CM(z) in inverse powers of G0(z).
If the first nonzero term is of order k+1, then we have explicitly

CM(z)=&mk G&k&1
0 (z)&mk+1G&k&2

0 (z)&mk+2G&k&3
0 (z)+ } } } (5.3)

with the mn defined by Eq. (4.2). The cases of physical interest have k=0
(bulk observables) or k=1 (surface observables), but it will be notationally
convenient to keep k as a parameter. We will also refer to it as the order
of M.

To find CMM$(z) we may still start from Eq. (4.5), but now the expan-
sion of this equation runs differently. The reason is that for z � 1 at fixed
! the function f (r, z) (defined by (2.31)) behaves as F(!)�G0(z) and so is of
the same order as gA(z)�G0(z) and gB(z)�G0(z). We therefore have to per-
form a double expansion of the RHS of Eq. (4.5) in terms of on the one
hand F�G0 and on the other hand gA�G0 and gB�G0 . The sum on r, which
in the scaling limit becomes an integral on !, then leads to the appearance
of coefficients F1, n defined as in Eq. (3.10) but with :=1. Special cases are
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F1, 1=1 and F1, 2= 1
3 . Let mk and m$k be the first nonzero coefficients in the

expansions of CM(z) and CM$(z), respectively. Then we find for CMM$(z),
retaining only the three leading order terms in the limit z � 1,

CMM$(z)& &
1

(1&z) Gk+k$+2
0 (z)

[2mkm$k$&G&1
0 (z)( 1

3 (k+k$+2) a2mkm$k$

&2(mkm$k$+1+mk+1m$k$))

+G&2
0 (z)(2F1, 3(k+1)(k$+1) a3mk m$k$

& 1
3 (k+k$+3) a2(mkm$k$+1+mk+1m$k$)

+2(mkm$k$+2+mk+1m$k$+1+mk+2m$k$))] (5.4)

The inverse transforms (2.7) and (2.8) of CM(z) and CMM$(z), respectively,
may be found with the help of the explicit expression (2.22) for G0(z) and
the integrals of ref. 18. We state only the explicit result for M(t), which is,
for t � �,

M(t)&
3k+1t

logk+1 ct _mk+
1

log ct
((1&#)(k+1) mk+3mk+1)

+
1

log2 ct \\1&
1

12
?2&#+

1
2

#2+ (k+1)(k+2) mk

&3(1&#)(k+2) mk+1+9mk+2+& (5.5)

in which #=0.577215... denotes Euler's constant. Both M(t) M$(t) and the
product M(t) M$(t) then appear as t2 times a power series in 1� log ct of
which the leading term is of order k+k$+2, and in which the three leading
orders have to be retained. Upon carrying out the subtraction one finds
that the two leading orders cancel and the correlation 2M(t) 2M$(t)
appears to be proportional to t2� logk+k$+4 ct. Explicitly, as t � �,

2M(t) 2M$(t)&A2(k+1)(k$+1) mk m$k$

3k+k$+2t2

logk+k$+4 ct
(t � �) (5.6)

in which the coefficient A is given by

A2=1+(F1, 3& 1
6) ?2 (5.7)

Numerical evaluation gives F1, 3=0.27415..., whence A2=2.0608... .
Equation (5.6) is the same as for the two-dimensional simple random
walk, (14, 7, 6, 18) but with a different constant A.
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6. UNIVERSALITY OF FLUCTUATIONS

We consider in this section the normalized deviations from average

%M(t)=
2M(t)

2M2(t)1�2
(6.1)

These random functions of time satisfy by construction

%M(t)=0, %2
M(t)=1 (6.2)

We consider now two arbitrary observables M and M$. When 2
3�:<1 we

have from Eq. (6.1) together with either Eq. (5.2) or Eq. (3.13) that

%M(t) %M$(t)=1 (6.3)

It then follows from Eqs. (6.2) and (6.3) that the difference %M&%M$ is a
random variable of zero average and zero variance. Such a random variable
can only be itself equal to zero. We therefore deduce that, when 2

3�:<1,
in the limit t � � all %M(t) are equal to a single random variable, which we
will call 3:(t), thus indicating explicitly its : dependence.

When 1�:<2 we have for two observables M and M$ whose orders,
k and k$, are equal from Eq. (6.1) and either Eq. (5.6) or Eq. (4.10) again
the result (6.3). Hence, when 1�:<2, in the limit t � � all %M(t) with
k=0 are equal to a single random variable��that we will call 3:0(t)��and
all %M(t) with k=1 are similarly equal to a single random variable��that
we will call 3:1(t). The variables 3:(t), 3:0(t), and 3:1(t) are universal in
the sense that they are independent of the observables M (but depend at
most on their order).

In each of these cases the key ingredient necessary for arriving at
Eq. (6.3) is the factorization of M(t) M$(t) into an M and an M$ dependent
part. This also explains why for :< 2

3 the same reasoning fails.
The cross correlation between 3:0(t) and 3:1(t) is easily found from

the correlation between a %M(t) and a %M$(t) with k=0 and k$=1, and use
of the second one of Eqs. (4.10). The answer is independent of the choice
of M and M$, as it had to be, and reads

3:0(t) 3:1(t)=B2
:10(B:00B:11)&1 (6.4)

The coefficient ratio on the RHS of this equation depends only on the
exponent : and must necessarily be less than unity. In the limit : � 1+ it
approaches unity and for :<1 the distinction between surface and bulk
observables is no longer reflected in the fluctuations.
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Upon combining all these conclusions we get explicitly

m2C(t log t)1�2 32�3(t) (:= 2
3)

m2B: t2&(1�:) 3:(t) ( 2
3<:<1)

2M(t)={mkA(k+1) t( 1
3 log ct)&k&2 31(t) (:=1; k=0, 1) (6.5)

m0B:00 t1�:3:0(t) (1<:<2; k=0)

m1B:11 t(2�:)&13:1(t) (1<:<2; k=1)

Here all M dependence is contained in the coefficients mn .

7. CONCLUSIONS

We have studied a large class of properties M(t) of the support of the
one-dimensional t step Riemann walk. These include the number S(t) of
distinct sites visited, and the number I(t) of sequences of adjacent visited
sites. The M(t) fall into two classes, the bulk or S-like properties, and the
surface or I-like properties. The asymptotic laws found in the preceding
sections for the averages, variances, and correlation of S(t) and I(t)have
been summarized in Table I in the Introduction.

It appears from that table that in the exponent regime 0<:�1 the
ratios 2S2(t)1�2�S(t) and 2I2(t)1�2�I(t) tend to zero when t � �, which
indicates that the distributions of S(t) and of I(t) become infinitely
narrowly peaked around their average. Hence in this exponent regime the
ratio s(t)#S(t)�I(t) represents the average number of sites per visited
sequence. When : is strictly less than unity we have explicitly

lim
t � �

s(t)=
m1[S]
m1[I ]

=
G� (0, 1)&G� (1, 1)

G� (0, 1)+G� (1, 1)
(0<:<1) (7.1)

The first equality is based on Eq. (3.5) and in the second one we used the
definition (3.4) of the mn[M] and the remarks at the end of Section 2.2.
The finiteness of the result (7.1) means that in the large t limit every new
step of the walk creates a new visited sequence with a finite nonzero prob-
ability. This explains that in this exponent regime the asymptotic power
laws do not distinguish between bulk and surface properties. For : � 1&

expression (7.1) diverges, and when :=1 the ratio s(t) increases logarith-
mically with t.

In the exponent regime 1<:<2 the appropriately scaled distributions
of S(t) and I(t) are of finite width even in the limit t � �. The support has
an ``interior,'' bulk and surface properties have different asymptotic power
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laws, and s(t) � � as t � �. In the terminology of critical phenomena,
this regime is fluctuation dominated. In this regime the universality of
fluctuations holds in a slightly weaker but at least as interesting a sense as
for 0<:�1. To describe the fluctuations, not a single but two universal
stochastic variables are needed, one applying to the bulk and the other to
the surface properties. These two variables become fully correlated in the
limit : � 1+.

When 2�: is equal to one of the integers 2, 3, 4,..., the asymptotic laws
of Table I coincide with the ones known to hold for the simple random
walk on a lattice of dimension d=2�:. Similarly, the universality properties
for those : values have their analogs in the d-dimensional simple random
walk. Hence the ``rule of the effective dimensionality,'' which states the
correspondence : � 2�d, applies to all properties that we have studied. Of
course it must break down when the comparison between the Riemann
walk and the simple random walk is refined sufficiently. Also, we have not
considered the borderline case :=2, which is special, (5) and for which this
rule fails.

Finally we remark that this work provides the analytical tools for
various possible extensions. Among these are the study of walks with long-
range but asymmetric step probability p(l); of walks constrained to arrive
at the tth step at a prescribed site; and of the support of N independent
walks. Whereas it is relatively easy to guess the answers to some of the new
questions which then arise, several others will require nontrivial analysis.

APPENDIX A. RELATIONS FOR THE INVERSE SUMS GA AND gA

We collect here some elementary matrix algebra relations useful for
dealing with the inverse sums GA and gA occurring in the main text. The
z dependence of these quantities plays no role. The presentation and nota-
tion are independent of the body of the paper.

Let L be an invertible l_l matrix. We define the ``inverse sum'' I(L) by

I&1(L)=:
i, j

L&1
ij (A.1)

In the remainder :, ;, and # will denote constants.

Property 1. Let J be the l_l matrix with all Jij=1, and let M be
an invertible l_l matrix. Let L=:J+#M. Then

I(L)=:+#I(M ) (A.2)

The proof of this relation is given in ref. 18.
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Property 2. Let M and N be invertible matrices of dimensions
m_m and n_n, respectively, and let L be the block diagonal l_l matrix
with blocks M and N. Then

1
I(L)

=
1

I(M )
+

1
I(N )

(A.3)

This follows directly from the definition (A.1). The calculation of I(L) for
an l_l matrix may be reduced to an inversion problem of dimension less
than l also in certain cases where L is not block diagonal, as shown below.

Property 3. Let Jmn be the m_n matrix with all elements equal
to 1. Let L be l_l and of the form

L=\ #M
;Jnm

;J mn

#N + (A.4)

Then

I(L)=
#2I(M ) I(N )&;2

#I(M )+#I(N )&2;
(A.5)

To prove this we rewrite L as L=;J+L� , where J is as before and where

L� =\#M&;Jmm

0
0

#N&;Jnn+ (A.6)

From Property 1 we have that I(L)=;+I(L� ), after which by applying
Property 2 and once more Property 1, we obtain after some rearrangement
Eq. (A.5). For ;=0 Eq. (A.5) reduces to Property 2.

In this work the need for Properties 1 and 3 arises when the limit
# � 0 has to be taken. For #=0 the matrices L that occur on the LHS of
Eqs. (A.2) and (A.5) are no longer invertible, but these properties allow
nevertheless I(L) to be calculated in that limit.

APPENDIX B. CORRECTIONS TO SCALING

In Eq. (3.6) we have neglected the O(V2) terms that appear in
Eq. (2.15). Since in the last step that led to Eq. (3.13) the leading order in
1&z went down due to cancellations, we must now check that the O(V2)
terms remain subdominant. In this Appendix we will write Eq. (2.13) in the
simplified notation GA _ (r+B)=G+W where G and W are the first and
second matrix, respectively, on the RHS of Eq. (2.13). Upon writing the
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inverse G&1
A _ (r+B) as a perturbation series in W and applying Eq. (2.4) one

finds

G&1
A _ (r+B)= :

�

l=0

(&1)l :
c, c$

[G&1(WG&1)l ]cc$ (B.1)

The l=0 term of this series is the term shown explicitly on the RHS of
Eq. (2.15), and has been the object of study in Section 3.2. We will show
here that the terms with l�1 produce, in the scaling limit, only higher
order corrections to the final result. To this end we first consider CMM$(z)
defined by Eq. (2.6). Let Rl(z) denote the contribution to CMM$(z) from the
lth term in Eq. (B.1). In order to estimate the order in 1&z of Rl(z) as
z � 1 we first deduce from Eqs. (2.14) and (2.26) that in the scaling limit
the matrix elements of W behave as Va, r+b& (1&z) (2�:)&1 (b&a) F $(!),
and that summing on r amounts to applying (1&z)&1�: � d!. This yields
the asymptotic proportionality

Rl(z)t(1&z)&1�: | d!
1

G0(z) _
(1&z) (2�:)&1 F $(!)

G0(z) &
l

(B.2)

where G0(z) represents the order in 1&z of the matrix G. When l is odd,
this integral vanishes by symmetry, which shows that the leading correction
is of order V2, as anticipated. For ! � 0 we have, in virtue of Eq. (2.28),
that F $(!)t!&2+:. Hence the ! integral in Eq. (B.2) diverges in the origin
for all l�1 when 0<:<1. This signals that the main contribution comes
from r values near the origin. The order in 1&z of Rl(z) may then be
estimated by introducing in the integral the cutoff |!|tcst_(1&z)1�:,
which leads to Rl(z)t(1&z)0. When l�1 these additive corrections to
CMM$(z) in Eq. (3.11) are negligible, therefore, with respect to the
(1&z)(2�:)&3 term which, in the relevant exponent regime 2

3<:<1, deter-
mines the final result.
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